Movement Restoration

Movement Restoration

Movement Restoration

For people with cervical spinal cord injury or brainstem stroke, signals from the motor cortex have been “disconnected” from the limb. We are seeking to reunite these signals via brain-computer interface (BCI)-driven muscle activation. Intra-cortical implants pick up electrical neural activity in the brain and send that information to a computer, where the signals associated with intended movements are decoded. The computer then sends electrical impulses to muscles via implanted stimulating electrodes, which induce limb movement.

One of the goals of implanted neural interfaces is to provide natural, intuitive, real-time control of assistive devices that would be helpful to people with paralysis or limb loss. Recent work has markedly advanced the field of prosthetics for people who have had one or both arms amputated due to trauma or vascular disease. Additionally, there are safe and useful robotic limbs that can be attached to a wheelchair and used much in the same way the arm and hand was used prior to injury to the nervous system. We are working to evaluate the feasibility of using the brain signals directly related to intended movement of the hand
to enable easier and more complex control over these advanced prosthetic limbs and assistive robotic devices.

Partner Institutions

Brown Case Western Reserve University MGH Stanford School of Medicine DVA