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Abstract

Research into cortically controlled
prosthetic devices for paralyzed
individuals has resulted in some
preliminary success.  A system in which
a robot arm tracks the actual wrist
position of a monkey given
corresponding neural signals from the
animal’s motor cortex has been
developed.  The system uses a Time-
Delay Neural Network (TDNN) to
transform a time sequence of
multichannel neural activity into a
sequence of wrist positions.

Introduction

The ability of an individual with
severe spinal cord injury to control a
prosthetic device, such as a robot arm,
by thinking of the desired movement
depends on a control interface that can
successfully convert activity in the
motor cortex into a desired prosthetic
movement.  The control interface
described in this paper uses a neural
network to perform this conversion.
Use of a neural network allows the
conversion to be made independent of
an explicit, physiologically based system
model, since a neural network can learn

the desired input-output relationship.
The particular neural network used in
this research was a TDNN.  A TDNN is
simply a feedforward neural network
whose input vector is a tapped delay
line. The tapped delay line allows the
feedforward network to learn
spatiotemporal patterns.

Cortical Input Signals

Microelectrode arrays implanted in
the motor cortex of a rhesus monkey
provide 24 channels of neural input for
the prosthesis control system.  Each of
the signal channels from this array
records the level of activity in the area
of the motor cortex corresponding to
movement of the arm or hand.

Experimental data was obtained by
recording motor cortex activity from the
monkey while it performed trained
movements.  The trained movement
involved following a target on a
computer screen with a cursor.  The
monkey, whose arm was restrained,
controlled the cursor by moving a
joystick.  A potentiometer attached to
the joystick measured the monkey’s
wrist position, which was then digitized
and stored in a file with the recorded
neural data.  Thirteen flexion and



thirteen extension trials were extracted
from this data stream for training and
testing the prosthesis control system.
These trials were selected as the best
examples of their respective movements.

Data reduction procedures were used
to determine which of the 24 channels
would be most relevant to wrist
movement.  First, channel variation
during wrist movement was examined
using a signal formed by alternately
concatenating all of the extension and
flexion trials to mimic the original data
stream.  Channels with the highest
variance over time were chosen as those
most relevant to movement. Second, the
repeatability of each channel for the
same type of movement was measured
by selecting those channels having the
highest average autocorrelations over
multiple trials of the same movement.
The repeatability test validated the
results of the variance test.  These tests
thus provided reasonable measures of
channel relevance.  Only two of the
original 24 channels were selected to
serve as training and testing data.

Prosthesis Control System

Input signal preprocessing
operations and the TDNN comprise the
prosthesis control system.  A block
diagram of the system appears in Figure
1.   Eight of the thirteen
extension/flexion trial concatenations
were used to train the TDNN and the
remaining five were used as testing data.

        Figure 1: Neural Prosthesis Control System
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Preprocessing of the input signals
consists of median filtering, mean
subtraction, and amplitude
normalization.  Median filtering
eliminates spikes in the data while
preserving the general shape of the
signal.  Mean subtraction and
amplitude normalization were found
to improve TDNN training.  Input
signals to the prosthesis control
system are normalized using the
means and amplitude factors of the
training data.

A schematic of the TDNN appears
in Figure 2.

   Input Vector
  (number indicates vector element, t indicates time)

           Figure 2: Time-Delay Neural Network
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The TDNN is essentially a
feedforward neural network whose
input vector is a tapped delay line.  In



this case, the TDNN has an input
buffer of 10 successive samples for
both channels.  The output is
calculated using the current values of
both channels, as well as the past nine
values of  both channels.  Thus the
input vector to the feedforward neural
network is 20 dimensional.  The
tapped delay line input allows the
feedforward neural network to learn
temporal information in the neural
data.  The TDNN has two hidden
layers with 3 nodes in the first hidden
layer and 5 in the second.  Two
hidden layers are sufficient to
approximate any function to a given
accuracy provided there are enough
units per layer [1].  Experimentation
yielded the numbers of hidden layer
nodes used in this network.  There is
only one output node which provides
a normalized wrist position between
+1 representing full extension and -1
representing full flexion.  The output
values can be scaled to the desired
range of angular position.  The
network was trained using
backpropagation with momentum.

Figure 3 illustrates the
normalized monkey wrist position
versus wrist position computed by the
TDNN from the testing data set.
Although the TDNN output exhibits
some glitches, its general pattern fits
well to that of the actual wrist
position.

Software has been developed in
Visual Basic to perform these signal
processing tasks.  This software plots
the results shown in Figure 3 while
simultaneously controlling the wrist

motor of an Alpha II robot arm to flex
and extend from -45 to +45 degrees.

               (a) Actual Monkey Wrist Position

             (b) Computed Robot Wrist Position

               Time (seconds)
     Figure 3:  Actual vs. Computed Wrist Position
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Conclusion

The results illustrated in Figure 3
illustrate that time-delay neural
networks have the ability to convert
time-series motor cortex data into robot
arm control signals.  Possible
improvements in network performance
will be examined using different hidden
layer sizes when training with additional
data from the same monkey.  Network
behavior and training using data
recorded from a different monkey will
also be examined.  If these studies with
wrist movement yield positive results,
then similar methods will be examined
for control of the entire arm.
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